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S T R E S S E D - S T R A I N E D  S T A T E  O F  A H O L L O W  
C Y L I N D E R  I N  T H E R M A L  D I F F U S I O N  

O F  C A R B O N  I N T O  I T S  W A L L  

S. M. Shlyakhov and A. V. Minov UDC 539.3 

Using the finite-element method, we reduce the thermoelasticity problem to a system of difference 
equations solvable by a factorization method. The influence of the swelling of the crystal lattice of steel 
during the penetration of carbon into it on the stressed-strained state is considered. 

Saturation of structural elements with carbon diffusing from a body surface can be both forced with the 
aim of  improving the mechanical properties of a material (cementation) and independent, for example, transfer 
of  carbon by a sodium coolant in power installations. On exposure of a steel structure to carbon, the chemical 
composition and physicomechanical and thermophysical characteristics of the steel structure in the saturation 
depth vary, which leads to the need for evaluating the stressed-strained state of the part in the context of the 

mechanics of  inhomogeneous structures. 
Moreover, the penetration of  carbon into the crystal lattice of  a metal causes its swelling [l], which 

creates the field of supplementary (technological) stresses that depend on the concentration level of  a diffusing 
substance. In the case of a short-term regime of carbonization (the process of cementation), relaxation phenom- 
ena can be neglected. In long-term processes of  saturation with carbon (in the case of small powers of carboni- 
zation sources), the growth rate of  the stresses and their relaxation become comparable. In the case of the mean 
power of  the sources of saturation with carbon, the relaxation processes in the first approximation can be ne- 

glected. 
We consider a hollow cylinder with inner radius r = Rl and outer radius r = R2, which is located in a 

polar-symmetric thermal field under the action of carbon on its outer surface. The distribution of the concen- 
tration c = c(r, t) (0 < c < 1, 1 wt.%) of the diffusing carbon at any instant of time t is determined by the 

solution of the coupled thermal diffusion problem [2] 

~c (l) div (D grad c) =-~- ,  

div (X grad T) = 0 

with the following initial and boundary conditions: 

t = 0 ,  c = 0  for R I < r < R 2 ,  

c = 0  for r = R  l ,  c = c ( t )  for r = R  2 ( t > 0 ) ,  

T = T  l for r = R  1, T = T  2 for r = R  2. 

(2) 

(3) 

(4) 

(5) 
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Here D = Do exp ( - Q / ( R T ) )  and ~ = Mc, T). The source of carbon saturation is of the mean power; therefore 

its concentration reaches the limiting value c = 1 wt.% at r = R2 in conformity with the law [3] c ( t )  = 

k(T) +__.......~1 
exp ( -  R---~T)t n and subsequently remains constant, i.e., for now we do not consider the inverse kinet- Bo k ( T )  

ics. A heat-conduction equation is selected in the form of  Eq. (2), since the diffusion rate is much lower than 
the velocity of heat propagation and therefore the thermal regime is assumed to be stationary. 

For simultaneous solution of F_~s. (l) and (2) we use the method of temporal layers, assuming that 
within the limits of a time step the temperature field remains constant but varies from step to step. Replacing 
the boundary-value problems (1), (3), (4), and (2), (5) by variational ones that are equivalent to them and ap- 
plying the finite-element method, we obtain the system of  difference equations for determining the nodal values 
of the temperature and concentration of the carbon Ti  and ci: 

d c i _  1 dCi+l 
A 1 + A 2 - - ' ~ - + A 3 - " - ~ + A a c i - A 5 c i + I - A 6 c i _ I = O ,  i = 2  ..... N;  (6) 

a i T  i + biTi+ 1 + diTi+ 2 = O ,  i = 1 . . . . .  N -  1 , (7) 

where 

1 

AI - 12 ( r i+  1 -- ri) [/'t~l ÷ ri+l r i -  5ri+l r~ + 3r~] + 
1 

12 ( r  i - ri_ ~) 
× 

2 ~ 
× [ri3_l + ri_ 1 r i - 5 r i_  1 r? + 3 r  ] ; 

A 2 = [r~ - " A 3 = - r?] • rT_l] [r?÷l  , 

* * * D *  D i  ri+l ri D i - I  ri + r i - I  D i  ri+l + r i  i -I  ri + r i - I  
- - + - - - - ;  A5= - - ;  A 6 - - -  

A 4  - 2 ri+ 1 r i 2 r i - ri_ 1 2 ri+ 1 - r i 2 r i - ri_ 1 

i = 2  ..... N ;  

a i --  
~ i  ri+l + ri ~'i ri+l + ri ~'i+1 ri+2 + ri+l ~'i+1 ri+2 + ri+l 

- - '  b i  - - -  + - -  ' d i  = 2 ri+ ~ - ri+ 1 ' 2 ri+ l - r i 2 ri+ 1 - r i 2 ri+ 2 - ri+ 1 

i = 1  ..... N - l ;  

N is the number of the elements of splitting of the tube cross section; ~,~ and ~i+l  and D i a n d  D i +  1 a r e  the 
mean values of the coefficients of thermal conductivity and diffusion in the elements with numbers i and 
i + 1, respectively. 

To solve the problem of determining the penetration time of the diffusing substance into the tube wall, 
it is necessary to solve Eqs. (6) and (7) with the following boundary conditions: 

c 1 = 0 ,  c s = c ( t ) ,  (8) 

where s = N + 1 is the number of nodes. 

TI = l ' l ,  Ts = 1"~_, (9) 
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Fig. 1. Two contacting layers of  the transverse cross section of  a cylinder. 

Using the Crank-Nicholson difference scheme [4], we can solve the system of  ordinary differential 

equations (6). We integrate each of  Eqs. (6) with respect to time over the interval tj < t < tj+l, assuming the 

invariance o f  the diffusion coefficient within the limits o f  the time step At = t j + l - t j  (D* = const, Di*l = tj+l 
1 f 1 ' 1 . 

consh). Taking into account that ~ J c~dt--- ~ ( ~ + ~ . +  1) = ~ ( ~  + dk+l), k = i -  1, i, i +  1, we obtain 

(~'~ + A4/ciJ+l-I-(--~- A6/ci~-ll +l~--A51ci+J+l'= 

=l~t-A41c/-I-I---~t+A61c/-i-t-/--~ + A5/C/+l , 
i =  2 . . . . .  N ; j =  0 . . . . .  M ; M i s  the number o f  time steps; c 0 =  c o . . . .  " c°÷i = 0; ~ = 0, C/N+I = c(tj) at j =  

1 ,2  . . . . .  M. 

The difference equations are solved by the factorization method [4]. 
Having determined the distributions c = c(r, t) and T = T(r )  [2], we solve the thermoelasticity problem. 

We take the laws of  distribution of  the Young modulus E, the linear expansion coefficient c~, and the 

Poisson coefficient la to be dependent on the temperature T and the concentration of  carbon c in the form E = 

E0(T)(I - ~(T)c), ~ = e~0(T)(l - y(T)c), and lu = Jao(T)(l - 8(Tkc). 
In order to solve the thermoelasticity problem, we split the cylinder cross section into N layers and 

consider two adjacent layers with the numbers i and i + 1 (Fig. 1). We will use the fol lowing notation: Ri and 
Ri+l for the mean radii of  the layers; G0(i) and o0(i + l) for the circumferential stresses in the layers; qi+l and 

Ti+l for the contact pressure of  the layers and for the temperature in the zone of  contact. The distribution of  

the temperature and concentration of  the carbon inside each layer is approximated by the linear functions 

Ti+l - Ti ¢i+I -- Ci 
t i (r) = T i ff hi ( r -  r i ) ,  c i (r) = c i + hi (r  - r i ) ,  r i < r < ri+ 1 ; 

h i = r i + l - r  i ,  i = 1  ..... N ;  N + l = s .  

Here ci and ci+l are the nodal values of  the carbon concentration. 
In what follows, we take the condition that the cyl inder  can freely diffuse in the longitudinal direction 

and at the same time can have a bottom or not. 
The circumferential stresses in the layers can be determined by summing their values that are attribut- 

able to the pressure and are found by virtue o f  the thin-walled layers according to the membrane theory of 

shells with the stresses from a temperature drop over the cylinder-wall  thickness and stresses caused by the 

swelling of  the crystal lattice [1]: 
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Fig. 2. Cut-off portion of a cylinder. 

Z 

~o (i) = 
qi ( 2 g i  - hi) - qi+l ( 2 R i  + hi) E , ~  i ( T  i - Ti+ 1 ) r - R i + - - +  

2h i 1 -- ~1 i hi 

+ 

m 

k k 
Ei  Z ~'k (Ci -- ¢i+1) 

k'=l r - R i  (lO) 

1 - ~.1 i h i  

ri < r < ri+ 1, i = 1 . . . . .  N -  1, ql = O, qN+l = O, Ei ,  and ~ti are the element-mean values of the Young modulus 
and of the Poisson coefficient; ~,k are the swelling parameters. 

To determine the axial stresses ~z, we take, as a basis, the hypothesis for the plane deformation ~: = 
~ =  const. 

Let us consider the equilibrium of the cut-off portion of the cylinder (Fig. 2). Projecting all the forces 
that act on the cylinder onto the z axis, we obtain 

r~ N ri+l 

I ~ : r d r = N = O  or • I ~ : ( i )  r d r = O .  

r~ i=l r 

(11) 

According to Hooke's  law, the axial deformation of the cylinder is as follows: 

m 

1 
e: = "~ [(~: - g~O] + a t  (r) + Z ~'kzk (r) = ~ . 

k=l 

Whence 

m 

~: = E~ + g(~O - c~Et (r) - E ~ )~kc k 

k=l 

(12) 

or for each layer 

m 

CY: (i) = E i ~ + ~t i c o (i) - (x i E i t i (r) - E i Z ~kc~ (r) , 

k=-I 

i = l  . . . . .  N .  

Here Ei, (xi, and ~t i a r e  the mean values of the Young modulus, the linear expansion coefficient, and the Pois- 
son coefficient over the layers. Then condition (11 ) gives 

A ~ + B = 0 ,  (13) 

where 
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TABLE 1. Values  of the Mechanical and Thermophysical  Characteristics of the Material 

T,K 

873 

973 

Characteristics fi 
0 0.2 0.4 0.6 0.8 1 

E 

Ix 

E 

Ix 

0.330 

127 

1.59 

0.343 

117 

1.65 

0.237 

126 

1.59 

0.247 

116 

1.64 

0.207 

125 

1.59 

0.217 

115 

1.64 

0.187 

124 

1.58 

0.197 

114 

1.64 

0.177 

122 

1.58 

0.187 

113 

1.63 

0.174 

121 

1.58 

0.186 

111 

1.63 

B = E ( ~  ~ti (qi  ( 2R i  - hi) - qi+l (2e i  4- hi) ) + 1 -- ~liHi Ei Oti Ti -hi Ti+l 

i=1 

x 

[3 :11 r~+ 1 r i r . l  - r~ 
x R i 

- Z I~i Ei Ti Fi+l - Fi Ti+ 1 - T i r i+ ! r i r i+ 1 - r~ 
- - - - 5 - - -  + - - - - V - -  r + 

i=1 

N 
+ Z Hi 

1 - Hi 
i= 1 

F 2 ,, 3 _ r~ ri+ l - ri 
Ei  Z k k 1 ri+ 1 Ri  

(ci - ci+,) L 3 - - 5 - -  
k=l  

N m k 

-ZE, ZzkZ 
i=1 k=l n=0 

w n n .Ic-n hTt hi 
Ck Ci (Ci+l -- ¢i) - -  + ri " ' 

- n + 2  k - n +  1 

k.) 

N 2 2 
ri+ 1 -- r i 

A = ~ E i  2 

i=l 

- - ,  i = 1  ..... N" 

are the b inomia l  coefficients. 

To f ind  the contact pressures qi (i = 2 . . . . .  N), we use the condition for the consistency of deformations. 

This will require the equality of the radial displacements u(r) of the cylinder layers in the zone of their conju- 

gation: ui = ui+l at r = ri+l (i = 1 . . . . .  N -  1), where 

m 

u i (r) = ~/[(~0 (i) -- bt i O: (i)] + cci rt i (r) + r Z ~'k cl~ (r). 
k=l 

As a result, we obtain the system of difference equations 

ai qi + bi qi+l + Ci qi+2 =J~ +fi* ~ ,  (14) 

where 

o 

(1 - ~t?) (2R  i - h i ) .  

a i - 2 E  i h i ' 
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(1 - B~) (2Ri+hi)  (1 - I.t~+l) (2Ri+ 1 - hi+l) 
b i  ~ m 

R 

2E i h i 2Ei+l hi÷l 

( 1 - ~tT+l) (2Ri+ 1 + hi+l) 

c i = 2Ei+ 1 hi+l ' 

f i  = (1 + P'i+I) ~i+1 (T/+I - Ti+2) ( r i+ l  - R i+ l )  

hi+1 

( 1 + la i) ~i (Ti - Ti+l) (ri+l - Ri) 

hi 
+ 

+ ~i+1 (1 + ~i+1) Ti+l - ~i (1  + ~i) Ti+l + 

+ - -  

m 

* 
--  Ci+,~ ) ( r i +  1 - -  R i + I )  - 

hi+ 1 
k-=-I 

m m 

1 +~tihi Z ~k(cik _Ci+l)(ri+ _Ri)  + Z ~'kci+lk (~ii+l _ [i.li ) ; 

I,~1 k=l 

f/* = -- (~.1i+ 1 -- ~.li) , i = 1 .. . . .  N -  1 . 

Solving this system by the factorization method [4] with the conditions 

q l = 0 ,  q ~ = 0 ,  (15) 

that mean the absence of the pressure on the inner and outer cyl inder  surface, we obtain qi (i = 2 . . . . .  N) in the 

fo rm 

qi = qi + qi' ~ ,  (16) 

where  qi is the solution of  problem (14) and (15) that corresponds to the r ight-hand side j~ of  Eq. (14); qi* is 
the solution of the same problem but with the right-hand side fi* in Eq. (14); ~ is unknown. Substituting Eq. 
(16) into (13), we find first ~ and then qi. Here it should be noted that if no a l lowance is made for the depend-  
ence of  the Poisson coefficient on the carbon concentration and it (the Poisson coefficient)  is considered to be  
constant  over the cylinder cross section, then fi* = 0 and q~ = 0, and it is not necessary to solve Eq. (13) for  

f inding the contact pressures qi. 
Thus, having obtained the pressures qi and by means o f  them the radial stresses ~r(i) = -qi, f rom for-  

mula  (10) we find the distribution of  the stress ¢~0 and then, after the determination o f  8: = ~ f rom Eq. (13), 

we find the distribution of  ¢~: from formula (12). 
Consider an example of  calculation that is carried out for  the cylinder with geometr ic  dimensions Rl = 

94.5 m m  and R2 = 99.5 nun; the temperature on the inner cyl inder  surface is Tl = 893 K and on the outer  
surface, 7"2 = 973 K; the material is 1X18H10T-grade steel. In the calculations, we  took the following data, 

obta ined on the basis of  [3, 5]: the diffusion coefficient D = Do exp (-/c0/T), where  ko = 11,150 K and Do = 
7.4443 mm2ha. Table 1 presents the dependence of  the thermal conductivi ty coeff icient  ~ c ,  T) (J /mm.h.K) on 
the concentration of  carbon c and the temperature T, and also the values of  the Young  modulus E (GPa) and 
the linear expansion coefficient o~.105 (l/deg),  which is taken hypothetically.  The  Poisson coefficient is ~t = 
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Fig. 3. Graphs of the distribution o f  the stresses (MPa) and the concentra- 

tion (percentage) of  carbon over the cylinder radius: a and d) without al- 
lowance for the swelling effect after 10,000 h; b) same after 25,000 h; c, 

e) with allowance for the swelling effect after 10,000 h. r, mm. 

0.3; B0 = 2340.87, k(T) = 0.775 (for T = 973 K); n = 0.52. The swelling parameters ~. (i = 1 . . . . .  5) are taken 

just the same as for 45Kh-grade steel and have the fol lowing values: ~-t = 0.0158; ~ = -0 .0855;  3-3 = 0.2143; 

3,4 = -0.2422; 3-5 = 0.1024. The number of  splitting elements was taken to be equal to N = 10. The time step 

1025 



was 500 h. The given parameters of splitting turned out to be sufficient for reaching the required accuracy. A 
decrease in the splitting steps led to a change of less than 0.5% in the results of calculations. 

Figure 3a and b presents the results of the calculations without considering the effect of swelling of the 
crystal lattice. The results of  the calculations obtained with allowance for the swelling of the crystal lattice are 
given in Fig. 3c. In these cases, the material was taken to be thermally sensitive and with properties dependent 
on the carbon concentration. Figure 3d and e illustrates the graphs of the distribution of the stresses obtained 
on the assumption that the Young modulus, the linear expansion coefficient, and the Poisson coefficient are 
independent of the temperature and the concentration of the carbon. In the calculations they were taken to be 
as follows: E = 215 GPa, ~ = 1.15-10 -5 l/deg, and la = 0.3. 

Thus, the method presented enables one to obtain the solution of  the coupled problem of  thermal dif- 
fusion and the thermoelasticity problem for hollow cylinders with their surface carbonization. The investiga- 
tions carried out have shown that the thermal sensitivity of the material and the effect of swelling of the crystal 
lattice exert an influence on the level of  stresses. Here it turned out to be possible to displace the most stressed 
point in the cylinder cross section from the inner surface to the outer one subjected to the carbonization. On 
the basis of the aforesaid, a conclusion can be drawn on the need to allow for the indicated factors in carrying 
out investigations. 

N O T A T I O N  

el ,  inner radius of the hollow cylinder; R2, outer radius of the hollow cylinder; r, polar coordinate; t, 
time; T, temperature; c, relative concentration of carbon; D, diffusion coeffÉcient; Q, activation energy; R, gas 
constant; Do, constant for the given material that characterizes the diffusion coefficient; ~., thermal conductivity 
coefficient; T 1 and T2, temperatures on the inner and outer cylinder surfaces, respectively; ri, polar coordinates 
of the grid nodes; ci, nodal values of  the carbon concentration; ~-i* and Di*, element-mean splitting values of the 
coefficients of thermal conductivity and diffusion; or , t~0, and if:, radial, circumferential, and axial stresses, 
respectively; B 0, constant that characterizes the change in the carbon concentration. 
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